AQA Maths M2 Topic Questions from Papers Energy, Work and Power Answers

PhysicsAndMathsTutor.com

1 (a)	$P = (30 \times 42) \times 42$ AG	M1		Finding force
	= 52920 W	A1	2	Correct answer from $P = Fv$
(b)(i)	$F = 1200 \times 9.8 \sin 5^\circ + 30v$	M1A1		Finding force. Correct force
	$52920 = (1200 \times 9.8 \sin 5^\circ + 30v)v$	dM1		Using $P = Fv$
	$v^2 + 392\sin 5^\circ v - 1764 = 0$	A1	4	Correct equation from correct working AG
(ii)	$v = \frac{-392\sin 5^{\circ} \pm \sqrt{(392\sin 5^{\circ})^2 - 4 \times 1 \times (-1764)}}{2 \times 1}$	M1		Solving quadratic
	v = 28.3 or -62.4			PM:
	$v = 28.3 \text{ ms}^{-1}$	A1	2	Correct solution
	Total		8	

(Q4, Jan 2006)

2 (a)	$\frac{100}{0.4} e = 10 \times 9.8$	M1		Use of Hookes law and equilibrium
	0.4 e = 0.392 m	A1	2	Correct length
(b)	$EPE = \frac{1}{2} \times \frac{100}{0.4} \times 0.6^2 = 45 \text{ J}$ AG	M1 A1	2	Use of EPE formula Correct value from correct working
(c)(i)	$45 = \frac{1}{2} \times \frac{100}{0.4} (x - 0.4)^2 + \frac{1}{2} \times 10v^2 + 10 \times 9.8(1 - x)$	M1 A1 M1		Expression for EPE with $(x \pm 0.4)^2$ Correct EPE Four term energy equation
	$45 = 125(x - 0.4)^2 + 5v^2 + 98(1 - x)$	B1		Correct GPE
		A1		Correct equation
	$5v^2 = 98x - 98 + 45 - 125x^2 + 100x - 20$	dM1		Solving for v^2
	$v^2 = 39.6x - 25x^2 - 14.6 \text{ AG}$	A1	7	Correct result from correct working
(ii)	$39.6x - 25x^2 - 14.6 = 0$ $25x^2 - 39.6x + 14.6 = 0$			
	$x = \frac{39.6 \pm \sqrt{39.6^2 - 4 \times 25 \times 14.6}}{2 \times 25}$	M1		Solving quadratic
	=1 or 0.584	A1		Correct solutions
	<i>x</i> = 0.584	A1	3	Appropriate value selected SC Only correct answers given, award M1A1.
	Total		14	

(Q7, Jan 2006)

3 (a)	EPE = $\frac{1}{2} \times \frac{30}{0.5} \times 1.3^2 = 50.7 \text{ J}$	M1 A1	2	use of EPE formula correct EPE	
(b)(i)	$50.7 = \frac{1}{2} \times 2v^{2} + \frac{1}{2} \times \frac{30}{0.5} \times 0.8^{2}$ $50.7 = v^{2} + 19.2 \qquad \text{AG}$ $v = \sqrt{31.5} = 5.61 \text{ ms}^{-1}$	M1 A1 A1 dM1 A1	5	three term energy equation two terms correct all terms correct solving for v correct v from correct working	
(ii)	$50.7 = \frac{1}{2} \times 2v^{2}$ v = $\sqrt{50.7}$ = 7.12 ms ⁻¹	M1 A1		two term energy equation correct equation	
	$v = \sqrt{50.7} = 7.12 \text{ ms}$ $\frac{1}{2} \times 2v^2 = 50.7 - 1.8 \times 0.1 \times 2 \times 9.8$	A1 M1 A1 M1 A1	3	correct velocity finding friction force correct friction force three term energy equation correct equation	
	$v = \sqrt{47.172} = 6.87 \text{ ms}^{-1}$	Al	5	correct velocity	РМТ
	Total	<u> </u>	15		

(Q3, June 2006)

4 (a)	$\frac{1}{2} \times 35 \times v^2 = 35 \times 9.8 \times 10$	M1 A1		Energy method
	$v = 14 \text{ (ms}^{-1}\text{)}$	A1	3	
(b)	Air resistance or friction	B1	1	
(c)	Energy lost =			
	$35 \times 9.8 \times 10 - \frac{1}{2} \times 35 \times 12^2$ (=910)	M1 A1		Difference attempted ±
	Work done: $F \times 20$ (=910)	m1		
	20F = 910 $F = 45.5(N)$	A1	4	F > 0
	Total		8	

(Q1, Jan 2007)

5 (a)	$2g = \frac{49 \times x}{2}$	M1 A1]
	$2g = \frac{49 \times x}{0.5}$ $\underline{x = 0.2}$	A1	3		
(b)	EPE = $\frac{49 \times (0.2)^2}{2 \times 0.5}$ = 1.96 (J)	M1			
	= 1.96 (J)	A1	2		
(c)(i)	$1.96 = \frac{49 \times x^2}{2 \times 0.5} + 0.8 \times 9.8 \times (0.2 + x)$ $x^2 + 0.16x - 0.008 = 0$	M1 A3		All terms attempted for M1 -1 EE from A3	
	$x^2 + 0.16x - 0.008 = 0$	A1	5		
(ii)	$x = \frac{0.16 \pm \sqrt{0.16^2 + 4 \times 0.008}}{2}$	M1			
	<i>x</i> = 0.04	A1	2	x = 0.04 only identified	PMT
	Total		12		

(Q8, Jan 2007)

6 (a)	Kinetic energy = $\frac{1}{2} \times 5 \times 10^2$	M1		Full method
	= 250 J	A1	2	
(b)	Using conservation of energy: KE when box hits ground = Initial KE + Change in potential energy = $250 + 5 \times 30 \times g$ = 1720 J	M1 A1ft A1	3	Could have sign errors AG; SC2 $5 \times 35.1 \times g = 1720$
(c)	$\frac{1}{2}mV^2 = 1720$ $V^2 = 688$ ∴ Speed is 26.2 m s ⁻¹	M1 A1 A1	3	CAO; accept $\sqrt{688}$ or $4\sqrt{43}$; SC2 26.3
(d)	No air resistance Box is a particle	E1 E1	2	Or no resistance forces Deduct 1 mark for unacceptable third reason
	Total		10	

(Q1, June 2007)

x

7 (a)	EPE is $\frac{\lambda x^2}{2l}$,]
	$=\frac{200(0.5)^2}{2\times 2}$	M1			
	= 12.5 J	A1	2		
(b)	When string becomes slack,				
	using $\frac{1}{2}mv^2 = \text{loss in EPE}$:	M1		NB Using $\sqrt{5}$ to answer (a) and thus (b) \Rightarrow no marks	
	$\frac{1}{2} \times 5 \times v^2 = 12.5$ Speed is $\sqrt{5}$ m s ⁻¹	A1			
	Speed is $\sqrt{5}$ m s ⁻¹	A1	3	AG	
(c)	Resolving vertically, $R = 5g$	B1			
	$F = \mu R$	M1	1		
	$0.4 \times 5g = 2g$	M1	1		
	Using change in energy = work done:	1	1		
	$2g \times 0.5 =$	M1	1	M1 for force \times distance	
	$\frac{1}{2} \times 5 \times \left(\sqrt{5}^2\right) - \frac{1}{2} \times 5 \times v^2$	A1,A1		A1 first term (or 12.5) A1 second term (inc –)	
	$9.8 = 12.5 - \frac{5}{2}v^2$				
	$v^2 = 1.08$	1	1		
	Speed is 1.04 m s^{-1}	A1	7		РМТ
	Total		12]

⁽Q6, June 2007)

				1
8 (a)	Kinetic energy = $\frac{1}{2} \times 0.6 \times 15^2$	M1		
	= 67.5 J	A1	2	
(b)	Using $mgh = \frac{1}{2}mv^2$:	M1		
	$67.5 = 0.6 \times g \times h$	A1		
	$\Rightarrow h = \frac{67.5}{0.6g}$			
	= 11.5 m	A1	3	
(c)	When 3 m above ground level: Change in PE is $0.6 \times g \times 3$ = 17.64 J			
	∴ KE of ball is 67.5 – 17.64 = 49.86 J	M1 A1		
	Speed of ball is $\sqrt{\frac{49.86}{\frac{1}{2} \times 0.6}}$	m1		Dep on M1
	$= 12.9 \text{ m s}^{-1}$	A1	4	No KE given: speed = 12.9 SC3
(d)	eg ball is a particle, no air resistance, weight is the only force acting etc	E1	1	Accept no spin, no wind
	Total		10	

(Q1, Jan 2008)

0 (a)	$EPE - \lambda x^2$			
9 (a)	$EIE = \frac{1}{2l}$			
	$EPE = \frac{\lambda x^2}{2l}$ $= \frac{300 \times (1.5)^2}{2 \times 4}$	M1		
	= 84.375			
	= 84.4 J	A1	2	
(b)	When string is slack, gain in PE is mgh			
	$= 6 \times g \times 1.5 \sin 30$	M1		
	= 44.1 J	A1		
	KE = EPE – gain in PE = 84.375 – 44.1	m1		
	= 40.275	A1		
	$\frac{1}{2}.6.v^2 = 40.275$			
	v = 3.66	A1	5	AG
(c)	At A, PE gained above initial position is			
	$6 \times g \times 5.5 \sin 30$			Or PE above position string slack is 117.6
	= 161.7J	B1		KE at <i>A</i> is –77.3
	This is more than initial elastic potential energy	B1		
	\therefore particle will not reach A	E1	3	Or
	I		-	Using $v^2 = u^2 + 2as$
				a = 0.5g B1
				s = 1.37 or 1.366 B1 [or 2.87 above starting point]
				Hence stops before $A = E1$
				Vertical height above sling slack is 0.683
				Vertical height above starting point is 1.435
	Total		10	
	I otur		<u> </u>	I

(Q6, Jan 2008)

10 (a)	Using power = force \times velocity			
	Power = $(40 \times 50) \times 50$	M1		
	$\therefore = 100,000 \text{ watts}$	A1	2	
(b)	When speed is 25,			
	max force exerted is $\frac{100000}{25}$			
	= 4000N	B1		
	∴ Accelerating force is 3000N			
	Using $F = ma$			
	3000 = 1500 a	M1		Need 3 terms eg '4000' $\pm 1000 = ma$
				or $2000 \pm 1000 = ma$
				M0 for $1000 = ma$
	$a = 2 \text{ ms}^{-2}$	A1	3	
(c)	When van is at maximum speed			
	force against gravity is mgsin 6 (parallel	B1		
	to slope)			
	Force against gravity and resistance is			
	$mg\sin 6 + 40v$	M1		
	= 1536.6 + 40 v	A1		
	Speed is maximum	711		
	-			100000
	when $1536.6 + 40v = \frac{100000}{v}$	M1		For 3 terms; $\frac{100000}{v}$ and 1 other term
	, ,			correct
	$40v^2 + 1536.6v - 100000 = 0$	A1		CAO
	Speed is 34.4 ms^{-1}	A1	6	
	Total		11	

(Q4, June 2008)

ω

44 (0)				
11 (a)	Work done = $\int_{0}^{e} \frac{\lambda x}{l} dx$	M1		
	$= \left[\frac{\lambda x^2}{2l}\right]_0^e$	A1		Needs limit of 0
	$=\frac{\lambda e^2}{2l}$	A1	3	AG
	Or Area under a straight line = λe^2			
(b)(i)	average force × distance = $\frac{\lambda e^2}{2l}$ Using $T = \frac{\lambda x}{l}$			
	$5g = \frac{150 \times x}{0.6}$	M1		
	Extension is 0.196 m	A1	2	
(ii)	$EPE = \frac{\lambda x^2}{2l}$			
	$= \frac{150 \times (0.3)^2}{2 \times 0.6}$	M1		
			2	
	= 11.25 J	A1	2	
(iii)	When <i>x</i> above <i>P</i> ,			
	EPE = $\frac{150 \times (0.3 - x)^2}{2 \times 0.6}$	M1		for $\frac{150 \times (x)^2}{2 \times 0.6}$
	2×0.6	A1		2×0.6
	$PE[relative to P] = (-)5 \times g \times x$	M1		for $5 \times g \times \text{distance}$
	KE + EPE [at new point] = EPE [at P] – gain in PE	M1		4 terms, all signs correct, 2 terms correct
	$\frac{1}{2}mv^2 + \frac{150 \times (0.3 - x)^2}{2 \times 0.6} =$			
	$\frac{150 \times (0.3)^2}{2 \times 0.6} - 5gx$	A1		
	$\frac{1}{2}mv^2 + \frac{150 \times (x^2 - 0.6x)}{2 \times 0.6} = -5gx$	m1		Equation involving terms in v^2 , x^2 and x only
	$\frac{1}{2}.5.v^2 + 125 x^2 - 75 x = -49x$			
	$v^2 = 10.4x - 50 x^2$	A1	7	
(iv)	Particle is at rest when $v = 0$ $10.4x - 50x^2 = 0$ x = 0 [not required]	M1		
	Or $x = \frac{10.4}{50} = 0.208$ m above <i>P</i> .	A1	2	
	Total		16	
				(0.9 June 2009

(Q8, June 2008)

12 (a)	Initial KE = $\frac{1}{2}mv^2$				PMT
	$=\frac{1}{2} \times 6 \times 12^2$	M1		Allow one of <i>m</i> and <i>v</i> incorrect	
	= 432 J	A1	2		
(b)(i)	When it hits the ground, conservation of energy gives KE = Initial KE + loss in PE				
	$= 432 + 6 \times g \times 4$	M1		Need $6 \times g \times 4$ or 235.2	
	= 667.2 = 667 J (3sf)	A1	2	AG	
(ii)	$667.2 = \frac{1}{2} \times 6 \times v^2$	M1A1			
	$667.2 = \frac{1}{2} \times 6 \times v^2$ Speed is 14.9 m s ⁻¹	A1	3		
(iii)	Stone is a particle	B1		Not g constant	
	No air resistance	B1	2	No other forces acting	
	Total	L'	9		

(Q2, Jan 2009)

13 (a)	At maximum speed, tractive force = resistance force Using power = force × velocity:	M1		
	$800\ 000 = F \times 40$	M1		
	$F = 20\ 000\ N$	A1	3	
(b)	Using force × distance = work done = change in energy:			
	1 2 2	M1		M1 $Fs = change of KE$
	$20\ 000\ s = \frac{1}{2} \times 60\ 000 \times (40^2 - 36^2)$	A1		A1 2 of 3 terms correct
	2	A1		A1 all 3 terms correct
	Distance = 456 m	A1	4	
	Total		7	

(Q6, Jan 2009)

	XX71 1				7
14 (a)	When acceleration is zero,				
	tension = gravitational force $784x$				
	$\frac{784x}{16} = 80g$	M1		Both terms correct	
	x = 16, x + 16 = 32 m	A 1		A1 for $x=16$	
		A1	2	AT IOT $x = 10$	
	Length of cord is 32 m	A1	3		
(b)(i)	When bungee jumper comes to rest,				
	$EPE = \frac{784 \times x^2}{2 \times 16}$	M1			
	$=\frac{49x^2}{2}$				
	Change in PE = $80 \times g \times (16 + x)$	M1		Or $80 \times g \times 65 - (80g[16+x])$	
				(or 80g(49-x))	
	40 ²				PMT
	$\frac{49x^2}{2} = 80 \times 9.8 \times (16 + x)$	A1			
	$x^2 = 32x + 512$				
	$x^2 - 32x - 512 = 0$	A1	4	AG	
(ii)	$x = \frac{32 \pm \sqrt{32^2 + 2048}}{2}$	M1			
	x = 43.7128	A1			
	Distance below point of jump is				
	43.7 + 16 = 59.7 m				
	Distance between jumper and ground is				
	$65-59.7 \{ \}$	M1	4	A (5.007.5.2	
	= 5.29 m Total	A1	4 11	Accept 5.287, 5.3	
	Iotal		11		

(Q9, Jan 2009)

15 (a)	$KE = \frac{1}{2} \times 55 \times 3^2$	M1		
	= 247.5 J	A1	2	
(b)	Change in PE as slides down: $mgh = 55 \times 9.8 \times 20 \cos 30$	M1		Need cos 30 or sin 30
	= 9335.7 Using Conservation of Energy:	A1		
	KE at end of slide = $247.5 + 9335.7$ = 9580 J	m1 A1		'a' + '9335.7' accept 9583
	Speed of Anne is $\sqrt{\frac{9583}{\frac{1}{2} \times 55}}$	m1		
	$= 18.7 \text{ m s}^{-1}$	A1	6	
(c)	Anne is a particle; no air resistance	E1	1	
	Total		9	

(Q2, June 2009)

16	Force acting against gravity is $mg\sin\theta$	M1		Or 147000
	Force acting against gravity and resistance is $mg \sin \theta + 200000$ = $600000g \sin \theta + 200000$	m1		$200\ 000 + \text{`mg sin}\theta\text{'}$
	= 347 000	A1		
	Using power = force \times velocity	M1		
	$= 347000 \times 24$	A1F		
	= 8330 kW	A1	6	
	Total		6	

х

(Q5, June 2009)

17 (a)	$EPE = \frac{\lambda x^2}{2l}$			
	$=\frac{180\times0.8^2}{2\times1.2}$	M1		
	= 48 J	A1	2	
(b)	Using initial EPE = KE when string becomes slack:	M1		
	$48 = \frac{1}{2} \times 5 \times v^2$	A1F		
	$v = \sqrt{\frac{96}{5}} \qquad \qquad \mu$			
	$= 44.38 \text{ m s}^{-1}$ μ	A1F	3	ft $\sqrt{\frac{a}{2.\sharp}}g$
(c)	Normal reaction is $5g$ or 49 Frictional force is $5g \times \mu$ Work done by frictional force is $5\mu g \times 2$	M1 m1A1 m1		
	$=10\mu g$	A1		
	Stops at wall $\Rightarrow 10 \mu g = 48$	m1		m1 10 μg = ' a '
	$\mu = 0.490$	A1	7	accept $\frac{24}{49}$ OE
	Total		12	

P٨

(Q6, June 2009)

18	Work done = $Fs\cos\theta$	M1		Accept $Fs\sin\theta$ for M1
	$= 40 \times 5 \times \cos 30$	A1		
	= 173 J	A1	3	
	Total		3	

(Q1, Jan 2010)

[

19 (a)	When $x \ge 22$, KE is $\frac{1}{2} \times 49 \times v^2$			
	EPE is $\frac{1078(x-22)^2}{2 \times 22}$ Change in PE is $49 \times g \times x$	M1A1		M1 for any $\frac{1078p^2}{2\times 22}$
	Conservation of energy: $\frac{1}{2} \times 49 \times v^{2} + \frac{1078(x-22)^{2}}{2 \times 22} = 49 \times g \times x$ $\frac{49}{2}v^{2} + \frac{49}{2}(x-22)^{2} = 49gx$	M1A1 A1		M1 3 terms (KE, PE, EPE) A1 2 terms correct A1 all 3 terms correct
	$v^2 + (x - 22)^2 = 19.6x$			SC3 $\frac{49}{2}v^2 + \frac{49}{2}e^2 = 49g(e+22)$ [could use x for e]
	$5v^2 = 318x - 5x^2 - 2420$	A1	6	AG
(b)	If <i>x</i> is not greater than 22, cord is not stretched	B1	1	
(c)	At maximum value of x, $v = 0$ $\therefore 5x^2 - 318x + 2420 = 0$	M1		
	$x = \frac{318 \pm \sqrt{318^2 - 4 \times 5 \times 2420}}{2 \times 5}$	m1		dep on M1 above
	x = 54.76 or 8.84 = 54.8	A1 E1	4	A1 for either solution Needs to give a reason for deletion of second root. Both roots must be positive: one above 22, one below 22
(d)(i)	When speed is a maximum, $a = 0$ tension = gravitational force	M1		$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}x} = 318 - 10x$
	$\frac{1078(x-22)}{22} = 49g$ $x - 22 = 9.8$	A1		= 0 at maximum speed \Rightarrow 318 – 10x = 0
	x = 22 = 9.8 x = 31.8	A1	3	AG
(ii)	From part (a), $v^2 = 19.6 \times 31.8 - 9.8^2$ v = 22.96 Maximum speed is 23.0 ms^{-1}	M1 A1	2	
	Total		16	

(Q8, Jan 2010)

20 (a)	Kinetic energy = $\frac{1}{2} \times 3 \times 4^2$	M1			
	= 24 (J)	A1	2		
(b)	PE lost is				
	$= 3 \times g \times 51$ = 153g or 1499.4	M1			
	= 1500 J	A1	2	Accept 1499, 153g	
(c)(i)	KE is 24 + 153 <i>g</i>	M1		M1 '(a)' + '(b)'	
	= 1523.4 = 1520 J	A1		(if done (a)(i) in (b) () markey if done (b)	
	= 1320 J	AI		(if done (c)(i) in (b) 0 marks; if done (b) and then (c)(i) in (b) M1 only)	
(ii)	Using KE = $\frac{1}{2}mv^2$				
	$v^2 = 1015.6$	M1			
	Speed of stone is 31.9 ms^{-1}	A1	4	Accept 31.8 from 1520	
				If use constant acceleration formulae in	
				2D, possible 4 marks in (c) BUT no	
				marks if initial speed is treated as being vertical	
(d)	eg Stone is a particle	E1	1		
	No air resistance			Not no resistance; accept no wind	
		otal	9	resistance	

(Q2, June 2010)

х	

	x			
21 (a)	Using power = force \times velocity			
	$Power = (30 \times 48) \times 48$	M1		
	= 69120 watts	A1	2	AG
(b)	When speed is 40 m s ^{-1} ,			
	max force exerted is $\frac{69120}{40}$			
	= 1728 N	B1		
	Accelerating force is '1728' – 1200 N	M1		
	Using $F = ma$:			
	528 = 1200a	m1		
	$a = 0.44 \text{ m s}^{-2}$	A1	4	
(c)	Force exerted by engine is $\frac{69120}{v}$	B1		
	Force exerted by the engine = $30v - mg\sin 3$	M1		(Use of cos3 delete A1,A1 of 3 A terms)
	$30v - 615.47$ (or 1200gsin 3)= $\frac{69120}{v}$	A1A1		A2 All terms correct A1 Two terms correct
	$30v^2 - 615.47v - 69120 = 0$	A1		SC3 for $30v^2 + 615.47v - 69120 = 0$
	$v = \frac{615.47 \pm \sqrt{615.47^2 + 4 \times 30 \times 69120}}{2 \times 30}$	M1		
	Speed is 59.3 m s ^{-1}	A1	7	
	Total		13	

(Q6, June 2010)

22 (a)	PE lost is			
	$= 4 \times g \times 5 \cos 70$	M1A1	2	M1 $4 \times g \times 5 \times \cos \operatorname{or} \sin 20 \operatorname{or} 70$
	= 67.0 J			
(b)	KE is loss of PE \Rightarrow KE is 67.0 J	B1	1	ft
(c)	Using KE = $\frac{1}{2}mv^2$			
	Using KE = $\frac{1}{2}mv^2$ v^2 = 33.5 Speed of particle is 5.79 m s ⁻¹	M1		
	Speed of particle is 5.79 m s ^{-1}	A1	2	(ft from (b))
	Total		5	

(Q2, Jan 2011)

23 (a)	PE is $400 \times g \times 8$			
_((<i>i</i>)	= 3200 g [or 31 360]	B1	1	
(b)	KE is $\frac{1}{2} \times 400 \times 2^2$ = 800	B1	1	Г
(c)	Work done per minute is 32 160 J Power = $32 160 \div 60$	M1		$\left[\left(a\right)+\left(b\right)\right]\div60$
	= 536 W	A1	2	CAO Accept 537 from 31400 in (a)
	То	tal	4	-

_

(Q3, Jan 2011)

	Total		15	
	<i>x</i> = 0.4	A1	3	Or mid-point of values 0.2 and 0.6 above SC2
	$4g = \frac{196x}{2}$	A1		
(iii)	Max speed when $T = mg$	M1		
	$X = 0, \ 0.6$	(A1A1)		
	$4gX = 98 \times 0.7X + 49X^2$	(m1)		
(0)(11)	$\frac{196 \times 0.7^2}{2 \times 2} = 4gX + \frac{196(0.7 - X)^2}{2 \times 2}$	(A1) (A1)		(where <i>X</i> is distance moved upwards)
(b)(ii)	<u>Alternative</u> $10 \left(\left(0.7 - W \right)^2 \right)$	(M1)		
	x = 0.1	A1	6	[last A1, must give 0.1, not 0.1 and 0.7]
	$100x^2 - 80x + 7 = 0$ (10x - 7)(10x - 1) = 0	m1 A1		
	$2.45 = 2.8 - 4x + 5x^2$			A1 all correct
	$\frac{196 \times 0.7^2}{2 \times 2} = 4 \times g \times (0.7 - x) + \frac{196x^2}{2 \times 2}$	M1A1 A1		M1 3 terms (not including $\frac{1}{2}mv^2$) A1 2 of 3 terms correct
				M1.2 terms (not including 1 ²)
()	EPE (initial) = PE change (for platform) + EPE (when at rest)			
(ii)	= 0.7 By C of Energy, when next at rest,		~	
		A1	3	
	$x = \frac{14g}{196}$	A1		correct
(b)(i)	Using $T = \frac{\lambda x}{l}$, $7g = \frac{196x}{2}$	M1		M1 could use $3g$ or $4g$ – at least 1 side
	$=\frac{\lambda e^2}{2l}$	A1	3	AG
	$= \left[\frac{\lambda x^2}{2l}\right]_0^e$ $= \frac{\lambda e^2}{2l}$	A1		Must include limits from integral
24 (a)	Work done = $\int_{0}^{e} \frac{\lambda x}{l} dx$	M1		Condone lack of limits and ' dx '

(Q7, Jan 2011)

25 (a)	$KE = \frac{1}{2} \times 58 \times 2^2$	M1		M1: Correct fully substituted expression
	= 116 J	A1	2	for KE. A1: CAO
(b)	Change in PE: $mgh = 58 \times 9.8 \times 7$	M1		M1: Expression for PE with 58 and 9.8 or 9.81 with 6 or 7 for the height (or 11 and
	= 3978.8	A1		4, 11 and 5 or 10 and 4). A1: Accept 3980 or 3970 or 3978 or 3979 or 3978.8.
	KE = 3978.8 + 116 J = 4094.8 J	M1		Accept 3982 or 3983 or 3980. M1: Adding their two previous answers.
	Speed of Kim is $\sqrt{\frac{4094.8}{\frac{1}{2} \times 58}}$	dM1		dM1: Seeing expression for v (not v^2), dependent on second M1
	$= 11.88 \text{ m s}^{-1}$ = 11.9 m s^{-1}	A1	5	A1: Accept 11.88 or 11.8 or 11.9 Accept 11.88 or 11.8 or 11.9 or AWRT 11.89 from <i>g</i> = 9.81.
				Obtaining $v = \sqrt{u^2 + 2gh}$ followed by incorrect substitution M0M1M1, unless <i>h</i> is 6 or 7, which is M1M1M1
				11.0 (from <i>h</i> = 6) M1M1M1
				$v = \sqrt{2^2 + 2 \times g \times 7}$ M1M1M1
				$=\sqrt{141.2}$ A1
				=11.9 A1
				$v = \sqrt{4 + 14g} M1M1M1A1$ $= 11.9 \qquad A1$
				$v = \sqrt{2^2 + 12g} \qquad \text{M1M1M1}$
	Total		7	

(Q1, June 2011)

26 (a)	$90 \mathrm{km} \mathrm{h}^{-1} = 90 \times \frac{1000}{3600} \mathrm{m} \mathrm{s}^{-1}$ $= 25 \mathrm{m} \mathrm{s}^{-1} \qquad \mathbf{AG}$	B1	1	B1: Must see $\frac{1000}{3600}$ or $\frac{1000}{60^2}$.
(b)	Resistance is 5000 N Using power = force × velocity	B1		B1: Obtaining 5000.
	$= 5000 \times 25$	M1		M1: Using $P = Fv$ with 25 and their F.
	= 125 kW	A1	3	A1: Correct final answer, must be in kW.
				125W or 125 000 W B1M1 125 B1M1A1
	Total		4	

(Q5, June 2011)

27 (a)	$EPE = \frac{\lambda x^2}{2l}$			
	$= \frac{1800 \times (4)^2}{2 \times 6}$	B1 M1		B1: Extension = 4. M1: Substitution of 6, 1800 and their extension into EPE formula.
(b)	= 2400 J	A1	3	A1: Correct EPE
(0)	$\frac{1800 \times (x)^2}{2 \times 6} = \frac{1}{2} \times 200 \times 8^2$	M1		M1: Equation with EPE and KE terms, both correct.
	$x^2 = 42.67$			
	x = 6.53 m	A1		A1: Correct extension. Accept $\frac{8\sqrt{6}}{3}$ or
	Distance from <i>O</i> is 12.5 m	A1	3	6.53 or AWRT 6.532. A1: Correct distance. Accept 12.5 or AWRT 12.53.
(c)	Resistance force is 800 N Work done by resistance force is $800 \times (x + 6)$	B1		B1: Correct work done by resistance force.
	C of Energy gives $\frac{1800 \times (x)^2}{2 \times 6} + 800 \times (x+6) = \frac{1}{2} \times 200 \times 8^2$	M1A1 A1		M1: Three energy terms, KE, Work Done and EPE.A1: EPE correct.A1: Correct equation.
	$150x^2 + 800(x+6) = 6400$			
	$3x^{2} + 16x - 32 = 0$ or $150x^{2} + 800x - 1600 = 0$	A1		A1: Correct quadratic equation with no brackets.
	$x = \frac{-16 \pm \sqrt{16^2 + 4 \times 3 \times 32}}{2 \times 3}$	dM1		dM1: Solving their quadratic equation with correct formula and correct substitution
	x = 1.5497	A1		A1: Correct positive solution stated. Accept 1.54 or 1.55 or AWRT 1.55.
	Distance from O is 7.55 m	A1	8	A1: Correct distance from <i>O</i> . Accept 7.55 or 7.54 or AWRT 7.55.
	OR			01 7.5-T 01 /1 WICI 7.55.
	Use d for distance: $800 \times d$	(B1)		B1: Correct work done by resistance
	C of Energy gives $\frac{1800 \times (d-6)^2}{2 \times 6} + 800 \times d = \frac{1}{2} \times 200 \times 8^2$	(M1A1) (A1A1)		force. M1: Three energy terms, KE, Work Done and EPE.
	$150d^2 - 1000d - 1000 = 0$	(A1)		A1: Seeing $d - 6$ in EPE A1: EPE correct.
	$3d^{2} - 20d - 20 = 0$ $x = \frac{-20 \pm \sqrt{20^{2} + 4 \times 3 \times 20}}{\sqrt{20^{2} + 4 \times 3 \times 20}}$	(dM1)		A1: Correct equation. A1: Correct quadratic equation with no
	2×3			brackets.
	d = 7.55	(A1)		dM1: Solving their quadratic equation. A1: Correct distance from <i>O</i> . Accept 7.55 or 7.54 or AWRT 7.55.
	Τ -4-1		1/	01 / .JT 01 A W K1 / .JJ.
	Total		14	

(Q9, June 2011)

PhysicsAndMathsTutor.com

Q	72g Solution	Marks	Total	Comments
	28g			
28 (a)	$KE \operatorname{at}_{E} P = \frac{1}{2} \times 25 \times 60^{2}$	M1		correct
	$=45^{F}000 \text{ J}$	A1	2	
(b)	force diagram change in PE as it falls:	B2	2	B1 for any error
(b)(i)	$mgh = 25 \times 9.8 \times 34$ moments about <i>P</i> :	M1		correct
	$\overline{72g}^{8,530}_{g\times6\times\cos 69} + 28g\times4\times\cos 69$	М1	2	ISW 3 terms including distance and angles
(c)(i)	= $S \times 8 \times sin69$ using Conservation of Energy: (4329 + 1129)cos 69 = 8 S sin 69 KE at ground = 8330 + 45 000	A1A1		A1 2 correct terms
	$\begin{array}{c} \text{KE at ground} = 8330 + 45000^{-9} \\ \text{KE at ground} = 835000^{-9} \\ $	M1	2	ft C's (a) and (b) $544g$
	= 53 330 J (= 53 300 J to 3sf)	A1	2	ft if M1 gained in (a) and $\begin{pmatrix} 544 \\ 6 \end{pmatrix}^g$ 8 tan 69
	= 256N		4	
(ii)	speed of petitedlys $\sqrt{\frac{53330}{\frac{1}{2} \times 25}}$	M1		ft C's (c)(i)
	$= 69.9 \text{ gm s}^{-1}$	RI	2	CAO
	resolve horizontally: S = F Total	B1	8	
	10121		o	(Q1, Jan 2012
2 (a)	using $\mathbf{F} = m\mathbf{a}$:	M1	-	ie dividing by 50
	$\mathbf{a} = \hat{2} \hat{5} \hat{6} - \hat{1} \hat{12} \hat{9} \hat{8} \mathbf{i} + 2 \mathbf{e}^{-2t} \mathbf{j}$ = 0.261	M1 A1	2 4	
	ſ			
	= $(3 t^2 - 0.4 t^3) \mathbf{i} - \mathbf{e}^{-2t} \mathbf{j} + \mathbf{c}$	M1A1		condone lack of + c; M1 one term correct
29 (a)	usher power = force 4 jelocity	mlA 1	4	ft from ke $^{-2t}$ in (b); just adding 7 i – 4 j , m0
		m∿µAµ1 A1	2	accept unsimplified. CAO
	-		-	
(15)	when speed $y_s = 3 \text{ fm} $	M1A1		ft from (b)
	when speed is 13 m s $\frac{9.6^2 + 3.14351^{200}}{15}$ max force exerted is $\frac{13351^{200}}{15}$	A1	4	ft from (b)
	= 2940N	B1	-	
	resistance force is $25 \times 15 = 375$ N Total		10	
	accelerating force is 2940 – 375N = 2565	M1		
	using $F = ma$	_		
	2565 = 1500a $a = 1.71 \text{ m s}^{-2}$	m1 Al	4	
	u 1./1 III 5		*	
	Total		6	

(Q4, Jan 2012)

PhysicsAndMathsTutor.com

Q	Solution	Marks	Total	Comments
30 (a)	using EPE = $\frac{\lambda x^2}{2l}$, EPE = $\frac{32 \times 2.2^2}{2 \times 0.8}$	M1 B1		B1 for 2.2
(b)	= 96.8 J by C of Energy, when next at rest, EPE (initial) = work done against friction + EPE (when at rest)	A1 M1A1	3	M1A1 for work done by friction or $5F$
	96.8 = $F \times 5 + \frac{32 \times 1.2^2}{2 \times 0.8}$ 5F = 96.8 - 28.8 frictional force is 13.6N	M1A1 B1 A1	6	M1 3 terms; A1 all correct B1 28.8
(c)	0.8 = 48N	B1		
	tension > friction hence particle starts to move	E1	2	
(d)	when particle is next at rest, work done against friction is EPE at B $13.6 \times \text{distance} = 28.8$ distance is 2.1176 = 2.12 m	M1 A1	2	САО
(e)	total distance is 5 + 2.1176 = 7.12 m	B1	1	ft from M1 in (d) or total distance × 13.6 = original EPE, 96.8 total distance is 7.12 m
	Total		14	
	TOTAL		75	(Q8, Jan 2012

31 (a)	$KE = \frac{1}{2} \times 76 \times 28^2$	M1		All terms correct
	= 29792 J	A1	2	
	$= 29\ 800\ J$			
(b)	Change in PE: $mgh = 76 \times 9.8 \times 31$ J = 23 088.8 J	M1 A1	2	All terms correct
	$= 23\ 000.8$ J $= 23\ 100$ J	AI	2	
(c)(i)	KE when touches down on ground			
	= 29 792 + 23 088.8J	M1		Their values, one correct
	= 52 881 J = 52 900 J	A1	2	CAO
	[2000]			
(ii)	Speed of Alan is $\sqrt{\frac{52881}{\frac{1}{2} \times 76}}$	M1		
	= 37.304 m s ⁻¹			
	$= 37.3 \text{ m s}^{-1}$	A1	2	CAO
	Total		8	

_

(Q1, June 2012)

32 (a)	Initial EPE = $\frac{\lambda x^2}{2l}$			
	$=\frac{120\times(0.5)^2}{2\times5}$	M1		M1 for formula with extension 0.5
	=3 J	A1		
	Initial KE is $\frac{1}{2} \times 0.4 \times 9^2 = 16.2 \text{ J}$			
	2			
	When block is at <i>A</i> , $\frac{1}{2}mv^2 = 3 + 16.2$	M1		
	$v^2 = 19.2 \div 0.2 = 96$			
	Speed is 9.80 m s ^{-1}	A1	4	Accept $4\sqrt{6}$; condone 9.79
(b)(i)	Normal reaction is $mg = 0.4g$	M1		
	Frictional force is $0.4\mu g$ N	A1		
	Work done by frictional force is			
	$5.5 \times (0.4 \mu g)$ or $2.2 \mu g$	m1		
	C of Energy, when at A, gives	271		
	$19.2 - 5.5 \times (0.4 \mu g) = \frac{1}{2} \times 0.4 \times v^2$	M1		Three terms, eg initial energy in (a) (=3 or 19.2); work done; KE at <i>A</i> .
	$19.2 - 2.2 \mu g = 0.2 v^2$	A1		Fully correct
	$v = \sqrt{96 - 11 \mu g}$	A1	6	Ft $v = \sqrt{\left(v^2 \operatorname{in}(a)\right) - 11\mu g}$
	,		-	$\chi(r, m(r)) = r \sigma$
(ii)	Speed when rebounding is $\frac{1}{2}\sqrt{96-11\mu g}$	B1ft		
	Block is stationary at B			
	$\frac{1}{2} \times 0.4 \times \frac{1}{4} (96 - 11 \mu g) - 2.2 \mu g$	M1 A1		Three terms Two terms correct with sign
	$=\frac{120 \times (0.5)^2}{2}$	A1		Third term correct with sign
	2×5	411		Third term concet with sign
	$\frac{1}{2} \times 0.1(96 - 11\mu g) - 2.2\mu g = 3$			
	$4.8 - 2.75 \mu g = 3$	A1	ć	Or $4.8 - 0.55 \mu g - 2.2 \mu g = 3$
	$\mu = 0.0668$	A1	6	
	Total		16	

(Q8, June 2012)

33 (a)	$KE = \frac{1}{2} \times 0.16 \times 11^2$	M1			
	= 9.68 J	A1	2		
(b)	Change in PE: $mgh = 0.16 \times 9.8 \times 5$ = 7.84 J	M1 A1	2		
(c)(i)	KE when reached point B = 9.68 - 7.84 J = 1.84 J	M1 A1	2	'(a)' – '(b)' cao	
(ii)	Speed of ball is $\sqrt{\frac{1.84}{\frac{1}{2} \times 0.16}}$	M1		If added in (c)(i) 0 marks for (c)(i) 14.8 M1A1for c (ii)	
	$= 4.7958 \text{ m s}^{-1}$ = 4.80 m s ⁻¹	A1	2	Condone 4.8,4.79	
	Total		8		PN

(Q1, Jan 2013)

		Condone $\cos\theta$ or -1 for M marks
M1		
A1		
M1 den		
AĪ	_	
A1	5 5	Accept 188.9 or 188
	A1 M1 dep	A1 M1 dep A1 A1 5

—

(Q3, Jan 2013)

π

35 (a)	Work done = $\int_{0}^{e} \frac{\lambda x}{l} dx$	M1		SC1 $\int_{0}^{e} \frac{\lambda e}{l} de$
	$= \left[\frac{\lambda x^2}{2l}\right]_0^e$	A1		SC1 $\int_{0}^{e} \frac{\lambda e}{l} de$ SC1 $\int \frac{\lambda x}{l} dx$ with no limits
	$= \frac{\lambda e^2}{2l}$	A1	3	
(b)(i)	Using $T = \frac{\lambda x}{l}$:			
	Using $T = \frac{\lambda x}{l}$: $5g = \frac{392x}{1.6}$ $x = \frac{5g \times 1.6}{392}$	M1		
	392 = 0.2 Extension is 0.2 m	A1	2	
(ii)	When extension is 0.6 m, EPE = $\frac{\lambda x^2}{2l}$	B1		B1 for 0.6
	$= \frac{392 \times (0.6)^2}{2 \times 1.6}$ = 44.1 J	M1 A1	3	
(iii)	Let y metres be distance particle is above A. C of energy, when particle has speed 0.8 m s^{-1} , gives $5 \times g \times y + \frac{392 \times (0.6 - y)^2}{2 \times 1.6} + \frac{1}{2} \times 5 \times 0.8^2$ $= \frac{392 \times (0.6)^2}{2 \times 1.6}$	M1A1 A1F		M1 4 terms, 2 correct M1A1 4 terms, 3 correct M1A2 4 terms correct Ft answer to (b)(ii)
	$49y + 122.5(0.6 - y)^{2} + 1.6 = 122.5 \times 0.6^{2}$ $49y - 147y + 122.5y^{2} + 1.6 = 0$ $122.5y^{2} - 98y + 1.6 = 0$			
	$y = \frac{98 \pm \sqrt{98^2 - 4 \times 122.5 \times 1.6}}{2 \times 122.5}$ $y = \frac{98 \pm 93.9148}{245}$			
	245 = 0.016674 and 0.7833	A1		if x used instead of $0.6 - y$, A1 here for $x = 0.5833$
	Speed first becomes 0.8 when $y = 0.0167$	E1	5	
	Total		13	

(Q8, Jan 2013)

	Using $F = ma$			
	$F = 3 \times 96$	M1		PhysicsAndMathsTutor.com
Q	= 288 N Solution	A1 Marks	4 Total	Comments
6(a) 36 (a)	Using $F = ma$ $KE = d\overline{y} \times 52 \times 7^{2}$ $1600^{2} = 4000 - 40v$ = dt 274 J	M1		
	$= \frac{dt}{274} J$ $\frac{dv}{dv} = \frac{40000 - J40v}{400} = \frac{1}{2} $	A1	2	
(b)	$\frac{dt}{dt} = \frac{1600}{1600} \text{ mgh} = 52 \times 9.8 \times 8$ $= \frac{1600}{40} = 4076.8$	M1 A1		
	Carol's KE when she reaches the net $= 40274^{\nu} + 4076_{\mu} \otimes J = 5350.8 J$ $= 5390 \exists v$	A1	3	
(c)	$40\int \frac{dv}{100 - v} = \int dt$ Speed of Carcl is $t + \sqrt{\frac{5350.8}{c_1^2 \times 52}}$	МДА1		Condone lack of '+ c '
	when $t = 0, \forall = 0 \implies c = -40 \ln 100$ = $40 \ln (100 \ \text{m}_{-1}) = t - 40 \ln 100$ = $14.3 \ \text{m}_{-1}$	M1A1 A1	3	
			8	(Q2, June 2013)
	$v = \int a dt \\ 100 - v \\ e^{40} = (2) t_0^2 + t_v^3) \mathbf{i} - 5 e^{-4t} \mathbf{j} + \mathbf{c}$	M1A1		M1 for either term correct Condone no $+c'$
	When $\vec{j} = 100e^{-t}$ $6i - 5e^{-4}j = 21i - 5e^{-4}j + c$	M1		Finding '+ c'; not using $\mathbf{c} = 6\mathbf{i} - 5e^{-4}\mathbf{j}$
37	Using power = force × velocity $240\ 000\ \overline{z} = F \times 20$ $\mathbf{y} = (20t\ \overline{z} + t^3 - 15)\mathbf{i} - 5\mathbf{e}^{-4t}\mathbf{j}$	A1 M1A1 A1		
(b)	Xceele rating Force ¹ fs ⁱ 125 0 00 – 5000 = 7000 N	B1		
	Spinse $F_8 = ms^2 + 5^2$ 22 000 <i>a</i> = 7000 7 = 15.8 m s ⁻¹	M1		5 10
	$a = 0.318$ or $\frac{7}{22}$ m s ⁻² Total	A1	6 8	
	Total		6	

(Q7, June 2013)

	4			
38 (a)(i)	Using $T = \frac{\lambda x}{l}$			
	Tension in string is $\frac{60 \times 2.5}{2}$			
	3 = 50 N	B1		
	Frictional force on A [using $F = \mu R$]	21		
	is $0.4 \times 8 \times g$ = 31.36 N	B1		
	which is less than tension in string		-	
	Thus particle A moves towards the hole	B1	3	
(ii)	Gravitational force on <i>B</i> is $3g = 29.4$	B1		
(11)	which is less than tension in string			
	Thus particle <i>B</i> moves towards the hole	B1	2	
	• 2			
(b)	$EPE = \frac{\lambda x^2}{2l}$			
	$=\frac{60 \times (2.5)^2}{2 \times 3}$	M1		
	$=\frac{2\times3}{2\times3}$	M1		
	= 62.5 J	A1	2	
(c)	Let <i>x</i> be the distance <i>B</i> has moved			
	upwards Work done by friction [on Alic			
	Work done by friction [on A] is 31.36×0.46	M1		
	= 14.4256	IVI I		
	= 14.4230 = 14.43 J	A1		
	When <i>B</i> is at rest, extension is $2.04 - x$			
	$EPE = \frac{\lambda x^2}{2l}$			
	$=\frac{60 \times (2.04 - x)^2}{100}$			
	- 2×3			
	$=10(2.04-x)^2$ J	B1		
	C of Energy, when particle <i>B</i> is at rest,			
	gives $10(2.04)$ $x^2 = 14.425c$	X / 1 A 1		
	$3 \times g \times x + 10(2.04 - x)^2 + 14.4256$ = 62.5	M1A1 A1		
	$= 62.5$ $10x^2 - 11.4x - 6.4584 = 0$	AI		Or $10x^2 - 11.4x - 6.454 = 0$
	10x - 11.4x - 6.4584 = 0 x = 1.555 and -0.415			$01 \ 10x \ -11.4x - 0.454 = 0$
	Particle <i>B</i> is first at rest when it has			
	moved upwards 1.56 m	A1	7	Accept 1.55
	Total		14	

(Q9, June 2013)